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1 Introduction

The interdisciplinary character of scientific research today leads to many
instances in science, engineering and finance where mathematical models
based on systems where either algebraic or differential equations (or both
in hybrid models) are often used. In recent years, because of an increasing
need to better describe social, physical or biological reality, and because of a
tremendous improvement in computing technology, the models employed by
scientists have became more complex and more sophisticated, wherein the
number of variables and parameters being utilized have increased consider-
ably. This naturally has motivated new questions of determining the relative
importance of parameters, the effect on the model output of variation in
parameters, the uncertainty in the model results due to the uncertainty of
parameters, etc. Answers are not obvious for large, complex models and the
associated problems provide significant new challenges for inverse problem
research scientists. While the traditional literature on inverse problems has
provided a wide range of useful theories and results on topics from well-
posedness and regularity techniques to computational methodologies (e.g.,
see [23] and the extensive references therein), we focus here on concepts re-
lated to sensitivity which we believe can aid in experimental design to obtain
data. These will enhance practical aspects of parameter estimation as well
as motivate new questions in basic research. We do this in the context of
several examples in which we introduce and illustrate ideas.

Sensitivity analysis is an ensemble of techniques [24] that can provide
some answers to questions for a given problem of interest, yielding a much
better understanding of the underlying mathematical model with a resulting
marked improvement in the results obtained using the models. Tradition-
ally, sensitivity analysis referred to a procedure used in simulation studies
(direct problems) where one needed to evaluate the effects of parameter vari-
ations on the time course of model outputs and to identify the parameters
or the initial conditions to which the model is most/least sensitive. In re-
cent years however, due to an increasing interest in incorporating uncertainty
into models and in ascertaining the sensitivity of parameter estimates with
respect to data measurements, the uses of sensitivity have broadened sig-
nificantly [7, 26]. In one direction, sensitivity of systems with probability
measures embedded in the dynamics (problems involving aggregate dynam-
ics) have become important in applications in biology, electromagnetics, and
hysteretic and polymeric materials (see [7, 8] and the references therein). On
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the other hand, investigators’ attention has also recently turned to the sen-
sitivity of the solutions to inverse problems with respect to data, in a quest
for optimal selection of data measurements in experimental design. In this
paper we focus on this latter direction.

As part of model validation and verification, one typically needs to esti-
mate model parameters from data measurements, and a related question of
paramount interest is related to sampling; specifically, at which time points
the measurements are most informative in the estimation of a given param-
eter. Due to the fact that in practice the components of the parameter esti-
mates are often correlated, traditional sensitivity functions (TSF) used alone
are not efficient in answering this question because TSF do not take into
account how model output variations affect parameter estimates in inverse
problems. In an effort to overcome this shortcoming, Thomaseth and Cobelli
[26] recently introduced a new class of sensitivity functions, called generalized
sensitivity functions (GSF), which provide information on the relevance of
measurements of output variables of a system for the identification of specific
parameters. For a given set of time observations, Thomaseth and Cobelli use
theoretical information criteria (the Fisher information matrix) to establish
a relationship between the monotonicity of the GSF curves with respect to
the model parameters and the information content of these observations. In
this paper we present discussions on how to use this information content
tool along with TSF to improve the parameter estimates in inverse problems
and therefore to further validate the utility of these new functions in such
problems. It is, of course, intuitive that sampling more data points from the
region indicated by the GSF to be the “most informative” with respect to
a given parameter would result in more information about that parameter,
and therefore provide more accurate estimates for it.

We present a critical review of the positive features as well as shortcom-
ings of the GSF, from the perspective of parameter estimation problems via
several examples. We first illustrate ideas with the classic and well-known
logistic growth model of Verhulst-Pearl. This is followed by discussion in-
volving a recently developed model which we shall refer to as an agricultural
production network model. Our paper is organized as follows. In Section 2
we introduce the necessary theoretical framework for our analysis and we de-
fine the traditional (TSF) and the generalized (GSF) sensitivity functions. In
Sections 3 and 4 we introduce the Verhulst-Pearl logistic growth population
model and the agricultural production network model, respectively, and we
discuss numerical simulations carried out to investigate the effectiveness of
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the information content provided by the GSF to improve the accuracy of the
parameter estimates from the perspective of ordinary least square problems
with noisy data. Finally, in Section 5 we present our conclusions and remarks
and indicate directions for future work.

2 Theoretical Framework

We consider a parameter estimation problem for the general nonlinear dy-
namical system

ẋ(t) = g(t, x(t), θ)

x(t0) = x0,
(1)

with discrete time observations

yj = f(tj, θ) + εj = Cx(tj, θ) + εj, j = 1, . . . , n (2)

where x, g ∈ RN , f, εj ∈ RM and θ ∈ Rp. The matrix C is an M ×N matrix
which gives the observation data in terms of the components of the state
variable x.

We assume for our model that the observation errors εj are independently
identically distributed (i.i.d.), with zero mean. For different observation co-
ordinates fi, i = 1, . . . , M , we have different variances σ2

i associated with the
coordinates of the errors εj, i.e.

εj ∼ NM(0, V ),

where V = diag(σ2
1, . . . , σ

2
M). We also make the standard statistical assump-

tion that there exists a “true” value parameter θ0 such that the data set {yj},
which can be interpreted as a realization of the observation process Y = {Yj}
at the discrete time points tj, j = 1, . . . , n, has the form in equation (2) with
θ = θ0.

We use an ordinary least squares (OLS) approach to estimate θ0, and we
seek to find a value θ̂n that minimizes the cost functional

Jn(θ) =
n∑

j=1

(f(tj, θ)− yj)
T V −1 (f(tj, θ)− yj) . (3)

Since {yj} is a realization of the random variable set {Yj}, the estimate

θ̂n we obtain by minimizing the cost functional Jn is a realization of some
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random variable Θ̂n. Therefore, the accuracy of our parameter estimates
θ̂n ultimately depends on the statistical properties of this random variable,
and in order to qualitatively analyze the estimates, we use a standard error
approach [16, 19, 20, 25].

From the asymptotic theory of statistical analysis, one finds that as n →
∞, Θ̂n ∼ Np(θ0, Σ0) is a good approximation, where the covariance matrix
Σ0 is given by

Σ0 =

(
n∑

j=1

DT
j (θ0)V

−1Dj(θ0)

)−1

, (4)

and Dj(θ) is the M × p Jacobian matrix of f with respect to θ at tj, i.e.,

Dj(θ) =
∂f(tj, θ)

∂θ
.

These are quite clearly the TSF for observations or measurement outputs
with respect to the parameters. The covariance matrix Σ0 is used in formu-
lating the standard errors for our estimates θ̂n; these are given by

SEk =
√

(Σ0)kk, k = 1, 2, ..., p. (5)

Because θ0 in (4) is unknown, we replace it by θ̂n when calculating approx-
imations for (5). Moreover, the variances σ2

1, . . . , σ
2
M are also generally un-

known, and in order to use (4)-(5) in practice, we also use the following
approximation

V ≈ V̂ =
1

n− p

n∑
j=1

[f(tj, θ̂
n)− yj][f(tj, θ̂

n)− yj]
T . (6)

For the case when the observation system is scalar, i.e., M = 1, the M×M
matrix V reduces to a scalar variance σ2

0, and the equation (5) reduces to
the standard formula

SEk =
√

σ̂2(χT χ)−1
kk , k = 1, 2, ..., p, (7)

with χ(θ) an n× p sensitivity matrix for our model given by

χjk(θ) =
∂f(tj, θ)

∂θk

. (8)
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For this scalar observation system, the approximation σ̂2 to σ2
0 in (7) is

usually [16] taken as

σ2
0 ≈ σ̂2 =

1

n− p

n∑
j=1

|f(tj, θ̂
n)− yj|2. (9)

2.1 Traditional Sensitivity Functions

Traditional sensitivity functions (TSF) are classical sensitivity functions used
in mathematical modeling to investigate variations in the output of a model
resulting from variations in the parameters and the initial conditions.

In order to quantify the variation in the state variable x(t) with respect to
changes in the parameter θ and the initial condition x(t0), we are naturally led
to consider (traditional) sensitivity functions (TSF) defined by the derivatives

sθk
(t) =

∂x

∂θk

(t), k = 1, . . . , p, (10)

and

rx0l
(t) =

∂x

∂x0l

(t), l = 1, . . . , N, (11)

where x0l is the l-th component of the initial condition x0. If the function g
is sufficiently regular, the solution x is differentiable with respect to θk and
x0l, and therefore the sensitivity functions sθk

and rx0l
are well defined.

Often in practice, the model under investigation is simple enough to allow
us to combine the sensitivity functions (10) and (11), as is the case with
the logistic growth population example discussed below. However, when
one deals with a more complex model, as with the agricultural production
network example, it is often preferable to consider these sensitivity functions
separately for clarity purposes.

Because they are defined by partial derivatives which have a local char-
acter, the sensitivity functions are also local in nature. Thus sensitivity and
insensitivity (sθk

= ∂x/∂θk very close to zero) depend on the time interval,
the state values x, and the values of θ for which they are considered. Thus
for example in a certain time subinterval we might find sθk

small so that the
state variable x is insensitive to the parameter θk on that particular inter-
val. The same function sθk

can take large values on a different subinterval,
indicating to us that the state variable x is very sensitive to the parameter
θk on the latter interval. From the sensitivity analysis theory for dynamical
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systems, one finds that s = (sθ1 , . . . , sθp) is an N × p vector function that
satisfies the ODE system

ṡ(t) = gx(t, x(t), θ)s(t) + gθ(t, x(t), θ), (12)

s(t0) = 0N×p,

so that the dependence of s on (t, x(t)) as well as θ is readily apparent. Here
we denote by gx = ∂g/∂x and by gθ = ∂g/∂θ the derivatives of g with respect
to x and θ, respectively.

In a similar manner, the sensitivity functions with respect to the com-
ponents of the initial condition x0 define an N × N vector function r =
(rx01 , . . . , rx0N

), which satisfies

ṙ(t) = gx(t, x(t), θ)r(t), (13)

r(t0) = IN×N .

The equations (12) and (13) are used in conjunction with equation (1)
to numerically compute the sensitivities s and r for general cases when the
function g is sufficiently complicated to prohibit a closed form solution by
direct integration.

Because the parameters may have different units and the state variables
may have varying orders of magnitude, sometimes in practice it is more
convenient to work with the normalized version of the TSF, referred to as
relative sensitivity functions (RSF). However, since in this paper we are using
the standard error approach to analyze the performance of the least squares
algorithm in estimating the true parameter values, we will focus solely on
the non-scaled sensitivities, i.e., TSF.

2.2 Generalized Sensitivity Functions

Generalized sensitivity functions were proposed by Thomaseth and Cobelli
[26] as a new tool in identification studies to analyze the distribution of the
information content (with respect to the model parameters) of the output
variables of a system for a given set of observations.

For a scalar observation model with discrete time measurements (i.e.,
when M = 1 and C is a 1 × N array in (2)), the generalized sensitivity
functions (GSF) are defined as

gs(tl) =
l∑

i=1

1

σ2(ti)
[F−1 ×∇θf(ti, θ0)] • ∇θf(ti, θ0), (14)
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where {tl}, l = 1, . . . , n are the times when the measurements are taken, and

F =
n∑

j=1

1

σ2(tj)
∇θf(tj, θ0)∇θf(tj, θ0)

T (15)

is the corresponding Fisher information matrix. The symbol “•” represents
element-by-element vector multiplication and, for motivation and details
which led to the definition above, the interested reader may consult [11, 26].
The Fisher information matrix measures the information content of the data
corresponding to the model parameters. In (14) we see that this information
is transferred to the GSF, making them appropriate tools to indicate the
relevance of the measurements in parameter estimation problems.

We note that the generalized sensitivity functions (14) are vector-valued
functions with the same dimension as θ. The k-th component gsk of the
vector function gs represents the generalized sensitivity function with re-
spect to θk. The GSF in (14) are defined only at the discrete time points
{tj, j = 1, . . . , n} and they are cumulative functions involving at time tl only
the contributions of those measurements up to and including tl; thus gsk

calculates the influence of measurements up to tl on the parameter estimate
for θk.

It is readily seen from the definition that all the components of gs are
one at the final time point tn, i.e., gs(tn) = 1. If one defines gs(t) = 0
for t < t1 (naturally, gs is zero when no measurements are collected), then
each component of gs varies between 0 and 1. As developed in [26], the
time subinterval during which the change in gsk has the sharpest increase
corresponds to the observations which provide the most information in the
estimation of θk. That is, regions of sharp increases in gsk indicate a high
concentration of information in the data about θk.

The numerical implementation of the generalized sensitivity functions
(14) is straightforward, since the gradient of f with respect to θ (or x0) is
simply the Jacobian of x with respect to θ (or x0) multiplied by the obser-
vation operator C. These Jacobian matrices can be obtained by numerically
solving the sensitivity ODE system (12) or (13) coupled with the system (1).
We will use this approach to compute the GSF for the agricultural production
model. For the other example, the logistic model, the right side of equation
(1) is sufficiently simple to permit a closed form solution.
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3 The Verhulst-Pearl Population Model

We begin by considering the Verhulst-Pearl logistic growth equation [22],
which approximates the evolution of a population size over time and is given
by

dx

dt
= rx

(
1− x

K

)
. (16)

The constants K and r represent the carrying capacity and the intrinsic
growth rate respectively. The solution x(t) of (16), representing the popula-
tion number at time t, is given by

x(t) =
K

1 +
(

K
x0
− 1

)
e−rt

, (17)

where x0 = x(0) is the initial population size. The solution x(t) approaches
an asymptote at x = K as t →∞; this is depicted in Figure 1.

The Verhulst-Pearl logistic equation is a relatively simple example with
easily studied dynamics that is useful in demonstrating the utility of the
traditional sensitivity functions as well as the generalized sensitivity functions
in inverse problems (see [9] for more discussions on TSF for this system).
Unless data is sampled from regions with changing dynamics, it is possible
that some of the parameters will be difficult to estimate. Moreover, the
parameters that are obtainable may have high standard errors as a result
of introducing redundancy in the sampling region. In order to demonstrate
this for the logistic growth problem, we will examine varying behavior in
the model depending on the region from which tj is sampled. We consider
points τ1 and τ2, as depicted in Figure 1, partitioning the curve into three
distinct regions: 0 < tj < τ1, τ1 < tj < τ2, and τ2 < tj < T , with T
sufficiently large for our solution to be near its asymptote x = K. Based on
the changing dynamics of the curve in Figure 1, we expect differences in the
ability to estimate parameters depending on the region in which the solution
is observed.

To illustrate these ideas, we carried out estimation procedures for the
parameters θ = (K, r, x0) in the logistic growth population model using or-
dinary least square procedures with both numerically generated (no-noise)
and noisy simulated “data”. We produced data sets {yj}n

j=1 by evaluating
the numerical solution of (16) with the “true” value parameters θ0 at tj and
then adding random noise in some cases. With a small dimension parameter
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Figure 1: Distinct regions of growth in the Verhulst-Pearl solution curve.

space as in this example, a Nelder-Mead optimization algorithm is sufficient
for the inverse problem. We hence use the MATLAB function fminsearch
to minimize the cost functional

Jn(θ) =
n∑

j=1

|f(tj, θ)− yj|2 (18)

with respect to θ and using an initial guess θ0 for the optimization algorithm.
In order to avoid what is typically called an inverse crime, we evaluate f in
the cost function using the ODE solver ode15s with (16), which returns the
numerical approximation to the solution f(t, θ) = x(t; K, r, x0), rather than
using the analytical solution (17). This, in effect, produces “noisy data” even
when no additional noise is added. In this note we illustrate ideas with a
specific example, taking θ0 = (K, r, x0) = (17.5, 0.7, 0.1); the corresponding
solution curve x(t) can be seen in Figure 2(a).

3.1 Traditional Sensitivities

We consider an ordinary least squares problem for the estimation of the
parameters θ = (K, r, x0) in the logistic growth model (16), using the explicit
solution given by (17) and then examining the sensitivities with respect to
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the parameters K, r, and x0. We can readily compute the partial derivatives

∂x

∂K
=

x2
0(1− e−rt)

(x0 + (K − x0)e−rt)2
,

∂x

∂r
=

Kxo(K − x0)te
−rt

(x0 + (K − x0)e−rt)2
, (19)

∂x

∂x0

=
K2e−rt

(x0 + (K − x0)e−rt)2
,

which are the traditional sensitivity functions sK , sr and sx0 .
We analyze the TSF corresponding to each parameter in the initial region

of the curve, where the solution approaches x0. When we consider the initial
region of the curve, where 0 < tj < τ1 for j = 1, . . . , n, we have

∂x(tj)

∂K
≈ 0,

∂x(tj)

∂r
≈ 0,

∂x(tj)

∂x0

≈ 1;

this follows from considering the limits of the sensitivity functions (19) as
t → 0. Based on the above analytical findings, which indicate low sensitivities
with respect to K and r, we expect to have little ability to determine these
parameters when we sample data from [0, τ1]; however we should be able to
estimate x0.

We next consider the region of the curve which is near the asymptote at
x = K, in this case for τ2 < tj < T , j = 1, . . . , n. Here we find that by
considering the limits as t →∞, we have the approximations

∂x(tj)

∂K
≈ 1,

∂x(tj)

∂r
≈ 0,

∂x(tj)

∂x0

≈ 0.

Based on these approximations, we expect to be able to estimate K well when
we sample data from [τ2, T ]. However, using data only from this region, we
do not expect to be able to estimate x0 or r.

Finally, we consider the part of the solution curve where τ1 < tj < τ2 for
j = 1, . . . , n and where it has nontrivially changing dynamics. We note that
the partial derivative values differ greatly from the values in regions [0, τ1]
and [τ2, T ]. When [τ1, τ2] is included in the sampling region we expect to
recover good estimates for all three parameters.

Our analytical observations are fully consistent with information con-
tained in the graphs of the TSF illustrated in Figure 2(b) for T = 25. We
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Figure 2: (a) Logistic curve (b) TSF corresponding to each parameter for
the logistic curve with θ = (17.5, 0.7, 0.1).

note that the curve sK slowly increases with time and it appears that the
solution is insensitive to K until around the flex point of the logistic curve,
which occurs shortly after t = 7 in this case. The sensitivities sK and sr both
are close to zero when t is near the origin, and hence we deduce that both
K and r will be difficult or impossible to obtain using data in that region.
Also, we observe that sx0 and sr are nearly zero in [15,25], which suggests
that we will be unable to estimate x0 or r using observations in that region.

In order to computationally illustrate how the traditional sensitivity the-
ory applies to our logistic growth example, we present here a summary of
findings obtained using numerically (no-noise added) simulated data gener-
ated with ode15s. We also restricted the time domain from which we sampled
data points to one of the three regions of interest [0, τ1], [τ1, τ2] or [τ2, T ] for
each inverse problem calculation. Then we determined the standard errors
of each parameter set in order to analyze the success of the algorithm at ap-
proximating the various components of θ. (Other computations with varying
levels of added noise in the “data” are presented in [9] where findings are
similar to those reported here.)

We first sampled data from the region where the solution curve is close
to x0, and for this example we considered the region [0, 1]. We used several
initial guesses in our MATLAB solver, and expected with each guess that we
would be able to achieve an appropriate estimate for x0, but perhaps not for
r or K. In actuality we were able to obtain close estimates for both r and
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x0, as reported in Table 1.

θ0 θ̂ Standard Errors

Values obtained using data in 0 ≤ t ≤ 1
(8,1,0.3) (10.686,0.7038,0.09998) (10.398,0.003589,3.4206e-05)
(15,2,0.2) (26.8241,0.6978,0.1000) (7.4758,0.002581,2.4593e-05)

(30,0.3,0.5) (34.1993,0.6970,0.1000) (9.9947,0.003450,3.2879e-05)
(10,0.1,0.3) (16.9140,0.7001,0.1000) (0.7924,0.000274,2.6068e-06)

Values obtained using data in 1 ≤ t ≤ 15
(8,1,0.3) (17.4985,0.6998,0.1001) (0.002062,0.0003049,0.0002142)
(15,2,0.2) (17.4985,0.6998,0.1001) (0.002063,0.0003050,0.0002143)

(30,0.3,0.5) (17.4985,0.6998,0.1001) (0.002061,0.0003048,0.0002141)
(10,0.1,0.3) (17.4984,0.6998,0.1001) (0.002063,0.0003051,0.0002144)

Values obtained using data in 15 ≤ t ≤ 25
(8,1,0.3) (17.4879,1.1427,0.0495) (0.02912,1.5016,2.3000)
(15,2,0.2) (17.4877,1.7838,0.1908) (0.03076,1.5865,2.4301)

(30,0.3,0.5) (17.5017,0.5887,0.5374) (0.00268,0.1381,0.2115)
(10,0.1,0.3) (17.5023,0.5468,1.0098) (0.00328,0.1689,0.2587)

Table 1: The optimized θ values and corresponding standard errors, on the
given intervals with θ0 = (17.5, 0.7, 0.1) implemented using a computationally
noisy data set.

Upon further examination we found that r and x0 are highly correlated
when 0 ≤ t ≤ 1, which is evident by the magnitude of their correlation
coefficients, given in Table 2. By studying each iteration of the MATLAB
solver, we observed that a good estimate for x0 was easily obtained, and then,
due to the high correlation between r and x0, r was eventually obtained each
time. However, true to our predictions, K was never reasonably estimated
using data from this region.

Recall that correlation coefficients range from −1 to 1, where higher mag-
nitudes indicate stronger correlation between the corresponding parameters.
The correlation coefficients displayed in Table 2 were computed using the
standard definition

corr(X, Y ) =
cov(X,Y )

σXσY

where X and Y are two random variables with mean µX and µY and variances
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K r x0

K 1.0000 −0.3434 0.2855
r −0.3434 1.0000 −0.977
x0 0.2855 −0.977 1.0000

Table 2: Correlation coefficients for parameters

σ2
X and σ2

Y . The parameter estimates θ̂n can be interpreted as realizations of
a random variable Θ̂n, with distribution which, from the asymptotic theory
of statistical analysis for the least square algorithm, can be approximated by
a normal distribution as n →∞, i.e., for n large, Θ̂n ∼ Np(θ0, σ

2
0(χ

T χ)−1) is
a good approximation. The correlation coefficients between two components
of θ are thus given by

corr(θk, θl) =
cov(θk, θl)

σθk
σθl

.

Using the definition of the covariance matrix, we have that cov(θk, θl) is
simply the (k, l)-th element of σ2

0(χ
T χ)−1 and the standard deviations σθk

and σθl
are the square roots of the (k, k)-th and (l, l)-th diagonal entries.

This was used to compute the approximate correlation coefficients of Table 2.
The logistic model above was considered and analyzed in [9] using tra-

ditional sensitivity functions. However the model was formulated with a
different parameterization: instead of θ = (K, r, x0), the parameter set was
given by β = (a, b, x0) = (r, r

K
, x0). Studying the TSF curves with this other

parameterization, we found there was no difficulty in predicting the regions in
which the state was sensitive to each parameter with no consideration given
to the correlation coefficients. With a new parameterization, θ = (K, r, x0),
the correlation between the coefficients reveals direct information on our abil-
ity to predict the identifiability for each parameter. Comparing these findings
with those of [9], we see that the parameterization of the model is critical in
sensitivity studies.

We next considered the region where the dynamics of the curve are chang-
ing, and for our example this region is the interval [1, 15]. As expected, re-
gardless of the initial guess that is used in the solver, we can generally obtain
reasonable estimates for K, r and x0; this can be seen in Table 1.

Finally we sampled data from the region where the curve approaches an
asymptote at K, and for this example we considered the region [15, 25]. We
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used several initial guesses in our MATLAB solver, and expected that with
each guess we would be able to achieve an appropriate estimate for K, but
not for r or x0. This is precisely what occurred with every initial guess.

We see that the TSF, used in conjunction with the correlation coefficients,
provided sufficient information in these examples to predict which parame-
ters could be determined using data from different regions. Similar results
obtained using noise-added data with the logistic model, along with some
pitfalls of the TSF, can be found in [9].

3.2 Generalized Sensitivities

We next illustrate the utility of the generalized sensitivity functions by ap-
plying the theory to the logistic growth model (16). We start by numerically
computing the GSF using equation (14) with σ = 1 and the true value pa-
rameters θ0 = (17.5, 0.7, 0.1). The plots of these functions are shown in
Figure 3(b) where one can observe obvious regions of steep increase in each
curve. For the curves gsx0(t), gsr(t) and gsK(t), we find by visual inspection
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Figure 3: (a) Logistic curve (b) GSF corresponding to each parameter for
the logistic curve with θ = (17.5, 0.7, 0.1).

that these regions are approximately [4.5, 7.5], [7, 11] and [12, 25], respec-
tively. By the aforementioned generalized sensitivity theory, if we increase
the number of data points sampled in one of these regions, the estimation of
the corresponding parameter is expected to improve.

In order to implement the GSF for the logistic growth example, we intro-
duced noise into the simulated data by adding Gaussian noise εj∼N (0, σ2

0)
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for j = 1, . . . , n. To obtain the results in Tables 3, 4, and 5, we used a
randomly generated noisy data set with σ0 = 0.5. We initially sampled n

n m tGSF tnonGSF

50 0 (0.10748,0.029371,0.021604) (0.10748,0.029371,0.021604)
50 25 (0.077068,0.027991,0.020752) (0.10441,0.021464,0.015622)
50 50 (0.059962,0.025752,0.019184) (0.099866,0.01754,0.012632)
125 0 (0.061814,0.016807,0.01236) (0.061814,0.016807,0.01236)
125 25 (0.053069,0.016569,0.012234) (0.061051,0.014428,0.010561)
125 50 (0.046431,0.016095,0.011919) (0.06453,0.013726,0.010003)
125 125 (0.037958,0.016276,0.012124) (0.061772,0.010767,0.0077615)
250 0 (0.047175,0.012805,0.0094158) (0.047175,0.012805,0.0094158)
250 50 (0.039627,0.012356,0.009123) (0.046264,0.010884,0.0079648)
250 100 (0.035866,0.012422,0.009198) (0.045259,0.0095868,0.0069842)
250 250 (0.027388,0.011737,0.0087426) (0.04239,0.0073602,0.0053052)

n m tuniform

50 0 (0.10748,0.029371,0.021604)
50 25 (0.086565,0.023623,0.017374)
50 50 (0.077352,0.021049,0.01548)
125 0 (0.061814,0.016807,0.01236)
125 25 (0.057056,0.015504,0.011401)
125 50 (0.053388,0.014502,0.010664)
125 125 (0.047175,0.012805,0.0094158)
250 0 (0.047175,0.012805,0.0094158)
250 50 (0.043685,0.011854,0.0087166)
250 100 (0.0404,0.01096,0.0080592)
250 250 (0.034008,0.0092229,0.0067818)

Table 3: This table shows standard errors corresponding to the addition of
m extra points in or excluding [12,25], as it is the period of steepest increase
for the parameter K.

data points uniformly over the entire region [0, 25], and then we sampled an
additional m points from varying parts of the entire region, comparing the
standard errors of each trial.

Each parameter in θ has a specific interval of steepest increase according
to the corresponding GSF, and the m additional points are sampled according
to those regions. In each of Tables 3, 4,and 5, we consider three separate time
grids:
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• tGSF consists of n uniform time points over [0,25] with m points added
in the area of steepest increase according to the GSF for each parame-
ter,

• tnonGSF consists of n uniform time points over [0,25] with m points
added everywhere except the area of steepest increase according to the
GSF for each parameter,

• tuniform is the time grid referring to n uniform time points over [0,25]
with m additional points added as uniformly as possible over the entire
region.

For example, in Table 3, the tGSF column refers to the standard errors
generated by optimizing θ over n uniformly distributed data points in [0,25]
with m additional data points sampled from the steepest increase interval
corresponding to K: [12,25]. The standard errors in the tnonGSF column
refer to the same n initial data points, with the additional m points sampled
from outside the GSF suggested region for K.

In general, values of standard errors are meaningful only relative to the
estimated values of the corresponding parameters. Thus, one should report
both the estimated parameter values and the corresponding SE. However,
here and in Section 4, we report only the changes in SE as data sets are
changed. This is because our primary focus is on these changes in SE and
because the corresponding OLS estimates are near (same order magnitude)
the true values θ0; hence it suffices to simply report only θ0 and the changes
in SE.

Note that since θ = (K, r, x0), the standard error for K is indicated as the
first entry in each of the ordered sets in each table, i.e., SEK = SEθ1 , and
Table 3 refers to the steepest region of increase in the GSF corresponding to
K. Similarly Tables 4 and 5 use the GSF regions corresponding to r and x0,
respectively, and so SEθ2 and then SEθ3 are the entries of interest.

We would have expected that for each parameter, the corresponding stan-
dard error in the tGSF column would generally improve as m increased. In
actuality, the corresponding standard errors generally improved when m ad-
ditional points were sampled in all three grids for each parameter. However,
we get better results with the tGSF grid than with the tuniform grid, and the
tnonGSF grid was the worst of the three. Hence we see that by catering to the
GSF-recommended regions, we are able to obtain better standard errors for
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n m tGSF tnonGSF

50 0 (0.10748,0.029371,0.021604) (0.10748,0.029371,0.021604)
50 25 (0.097735,0.021034,0.016379) (0.085987,0.025298,0.01814)
50 50 (0.10215,0.019931,0.015575) (0.071516,0.022395,0.015627)
125 0 (0.061814,0.016807,0.01236) (0.061814,0.016807,0.01236)
125 25 (0.061485,0.014585,0.011165) (0.055069,0.0155,0.011258)
125 50 (0.063405,0.013979,0.010842) (0.052744,0.015359,0.011012)
125 125 (0.062507,0.012136,0.009478) (0.043153,0.013462,0.0093937)
250 0 (0.047175,0.012805,0.0094158) (0.047175,0.012805,0.0094158)
250 50 (0.046673,0.011057,0.0084657) (0.043127,0.012158,0.0088167)
250 100 (0.045837,0.010087,0.0078221) (0.038498,0.01117,0.0080133)
250 250 (0.043884,0.0085094,0.0066447) (0.032496,0.010137,0.0070706)

n m tuniform

50 0 (0.107480,0.029371,0.021604)
50 25 (0.086565,0.023623,0.017374)
50 50 (0.077352,0.021049,0.015480)
125 0 (0.061814,0.016807,0.012360)
125 25 (0.057056,0.015504,0.011401)
125 50 (0.053388,0.014502,0.010664)
125 125 (0.047175,0.012805,0.009416)
250 0 (0.047175,0.012805,0.0094158)
250 50 (0.043685,0.011854,0.0087166)
250 100 (0.040400,0.010960,0.0080592)
250 250 (0.034008,0.009223,0.0067818)

Table 4: This table shows standard errors corresponding to the addition of
m extra points in or excluding [7,11], as it is the period of steepest increase
for the parameter r.

the corresponding parameters than if we had merely increased the number
of points sampled over the entire region.

3.3 “Forced-to-one” Artifact

We first note that the shape of the TSF curves remains the same regardless
of the amount of data that is sampled, whereas the GSF curves are data
dependent and change shape with varying amounts of data. We can see in
Figure 4 that when we restrict the data set for the logistic growth model to
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n m tGSF tnonGSF

50 0 (0.10748,0.029371,0.021604) (0.10748,0.029371,0.021604)
50 25 (0.10338,0.021906,0.014617) (0.081923,0.02323,0.017621)
50 50 (0.099638,0.018577,0.012139) (0.07291,0.021106,0.016235)
125 0 (0.061814,0.016807,0.01236) (0.061814,0.016807,0.01236)
125 25 (0.064238,0.015175,0.010452) (0.056836,0.015457,0.011486)
125 50 (0.059416,0.012951,0.0086999) (0.052824,0.01476,0.011091)
125 125 (0.05867,0.010902,0.0071197) (0.043777,0.012942,0.0099389)
250 0 (0.047175,0.012805,0.0094158) (0.047175,0.012805,0.0094158)
250 50 (0.046931,0.011043,0.0076218) (0.043069,0.011892,0.0088565)
250 100 (0.046695,0.010136,0.006819) (0.040509,0.011467,0.0086329)
250 250 (0.043801,0.0081056,0.0052964) (0.031893,0.0095317,0.0073385)

n m tuniform

50 0 (0.10748,0.029371,0.021604)
50 25 (0.086565,0.023623,0.017374)
50 50 (0.077352,0.021049,0.01548)
125 0 (0.061814,0.016807,0.01236)
125 25 (0.057056,0.015504,0.011401)
125 50 (0.053388,0.014502,0.010664)
125 125 (0.047175,0.012805,0.0094158)
250 0 (0.047175,0.012805,0.0094158)
250 50 (0.043685,0.011854,0.0087166)
250 100 (0.04040,0.010960,0.0080592)
250 250 (0.034008,0.0092229,0.0067818)

Table 5: This table shows standard errors corresponding to the addition of m
extra points in or excluding [4.5,7.5], as it is the period of steepest increase
for the parameter x0.

[0, 2], the TSF curves look the same as those where we merely zoom in to [0, 2]
after sampling data over the entire region [0, 25]. Then in Figure 5 the GSF
curves look very different when the sampled data is only from the interval
[0, 2] as compared to when the data is sampled from [0, 25] and zoomed-in
to [0, 2]. If an insufficient amount of data is used for parameter estimations,
the GSF curves can be misleading because by definition the GSF are forced
to be equal to one by the end of the data set. This so-called “forced-to-one”
artifact can cause misleading regions of steep increase in the GSF curves as
can be seen in the curve gsK when t ∈ [1.7, 2] in Figure 5(a). Observe that in
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Figure 4: In (a) and (b) we see the TSF of the parameters when sampling
data in [0,2] and the zoomed-in portion when data was observed from the
entire region [0,25].
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Figure 5: In (a) we see the GSF of the parameters when sampling data in
[0,2] and in (b) we have the zoomed-in portion [0,2] when data was observed
from the entire region [0,25].

Figure 4 we can see that the state is clearly not sensitive to the K parameter
in region [0, 2], and hence sampling additional data points in the period of
misleading increase would merely make estimates worse, with an increase in
standard error. We can also see another example of this in Figure 6 where
we compare the GSF curves generated from data sampled from [0, 0.2] to the
curves generated when data is sampled from [0, 25]. In Figure 6(b) it is clear
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that there is no significant period of increase for either K or r, however in
(a) it appears that the corresponding GSF curves both have distinct regions
of (again in this case misleading) increase. Therefore, it is important to note
that while the GSF curves can be misleading when a limited portion of data is
obtainable, the TSF curves can still be used appropriately in such sensitivity
studies.
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Figure 6: In (a) we see the GSF of the parameters when sampling data
in [0,0.2] and in (b) we have the zoomed-in portion [0,0.2] when data was
observed from the entire region [0,25].

It is also important to remark on the Fisher information matrix which
appears in the definition of generalized sensitivity functions (14). The in-
formation on the parameters provided by the measurement yi is quantified
by the derivative of an information index with respect to θi. When we try
to estimate the parameters r and x0 with data from the interval [15, 25]
alone (see Table 1), we obtain large errors which increase in magnitude when
the number of sample points increases. Although initially unexpected, this
phenomenon can be explained based on the GSF discussion presented above.
When we sample additional data points from the region where the traditional
sensitivity curves are flat and the generalized sensitivity functions exhibit the
“forced-to-one” artifact, we actually introduce redundancy in the sensitivity
matrix. This considerably increases the condition number of the Fisher in-
formation matrix, which in turn, by the Crammer-Rao inequality, causes the
variance of the unbiased estimator to be very large, making our estimates
less useful.
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Although there is improvement when the GSF-recommended regions are
considered, the amount of additional points sampled to garner the improved
standard errors needs to be taken into consideration. Depending on the
problem, the cost may be too high to sample additional data points for the
slightly improved results. However, in other cases the additional sampling
may be worth the improvement. While a useful tool, the GSF may not be
an efficient choice in some parameter improvement attempts.

4 An Agricultural Production Model

We continue our investigations on the relevance of the generalized sensitiv-
ity functions to parameter estimations problems, in this case with a more
complex example of an agricultural production network model formulated in
terms of the nonlinear dynamical system

ċ1(t) = −κ1c1(t)(l2 − c2(t))+ + κ4min(c4(t), sm)

ċ2(t) = −κ2c2(t)(l3 − c3(t))+ + κ1c1(t)(l2 − c2(t))+ (20)

ċ3(t) = −κ3c3(t)(l4 − c4(t))+ + κ2c2(t)(l3 − c3(t))+

ċ4(t) = −κ4min(c4(t), sm) + κ3c3(t)(l4 − c4(t))+

together with the initial conditions

c(0) = c0. (21)

The system (20) is the deterministic limit for large populations (in a
sense made precise in [2]) of a continuous time discrete state Markov Chain
proposed in [2] to model the flow and the impact of eventual disturbances
in a swine production network. For simplicity, the modeled network is as-
sumed to consist of four levels of production nodes: Growers (N1), Nurseries
(N2), Finishers (N3), and Processing Plants (N4), and each node represents
an aggregation of all the production units corresponding to that level in the
production process. Although unrealistic, it is assumed that there are no
losses in the first three nodes of the production network and the only deaths
occur at the processing plants. Another important assumption is that the
network is closed, i.e., there is a direct flow from node N4 to node N1, instantly
replenishing the network and keeping the total population size constant in
time. We note that this assumption is realistic when the network is efficient
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and operates at or near full capacity (i.e., when the number of animals re-
moved from the chain are immediately replaced by new production/growth,
avoiding significant idle times).

The state variables ci(t), i = 1, . . . , 4, represent the swine population size
(roughly speaking, an ensemble average in the sense of the Markov Chain
model of [2]) at the nodes Ni at time t. The parameters κi, i = 1, . . . , 4,
in (20) represent the transition rates between consecutive nodes and li, i =
2, 3, 4, represent the maximum capacitates at the nodes Ni. There is no
capacity constraint at node N1, but there is a maximum slaughtering capacity
at node N4 (processing plants) which we denote by sm. For any real z,
the symbol (z)+ is defined as the positive part of z, i.e., (z)+ = max(z, 0).
The numerical values of all the parameters which we used in our analysis
presented here are listed in Table 6. For more details about the model (20)
and its derivation, the interested reader may consult [2].

Parameters Definition Values Units
κ1 scaled rate at node 1 2.879 1/days
κ2 scaled rate at node 2 1.093 1/days
κ3 scaled rate at node 3 1.51 1/days
κ4 scaled rate at node 4 1 1/days
l2 scaled capacity at node 2 2.387 · 10−1 dimensionless
l3 scaled capacity at node 3 6.498 · 10−1 dimensionless
l4 scaled capacity at node 4 5.67 · 10−2 dimensionless
sm scaled slaughter capacity 1.039 · 10−1 dimensionless

c1(0) scaled initial condition 9.45 · 10−2 dimensionless
c2(0) scaled initial condition 2.221 · 10−1 dimensionless
c3(0) scaled initial condition 6.313 · 10−1 dimensionless
c4(0) scaled initial condition 5.19 · 10−2 dimensionless

Table 6: Aggregated agricultural network model: Parameters for determin-
istic simulations (numbers of pigs are in thousands).

We considered a series of least square problems using simulated noisy data
in order to probe the utility of the GSF pertaining to estimation problems.
Since we have three categories of parameters in our model (transition rates,
capacities and initial conditions of the network) we tried to estimate the pa-
rameters in each category when all the others remain fixed. The simulated
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data was generated by first numerically solving the system (20) with param-
eter and initial condition values given in Table 6 (we will refer to these values
as the true parameter values in these discussions), and then adding Gaussian
noise of zero mean and standard deviation 0.1 to the solution obtained at
each observation point.

We begin with the problem of estimating the transition rates κ1, κ2,
κ3 and κ4 when the l and c0k parameters are fixed at the values given in
Table 6. For the true parameter values θ0 = κ̄ = (2.88, 1.09, 1.51, 1), we
plot the generalized sensitivity functions (14) and the traditional sensitivity
functions in Figure 7. In both of these plots, one can observe a distinct time

0 50 100 150 200 250
−1.5

−1

−0.5

0

0.5

1

1.5

2

Generalized Sensitivity Functions with respect to κ
1
, κ

2
,κ

3
,κ

4

κ
1

κ
2

κ
3

κ
4

0 50 100 150 200 250
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Traditional Sensitivity Functions with respect to κ
1
, κ

2
,κ

3
,κ

4

κ
1

κ
2

κ
3

κ
4

Figure 7: Generalized and Traditional Sensitivity Functions with respect to
κ1, κ2, κ3, κ4 corresponding to parameters values given in Table 6.

point near t = 30, where the dynamics of both the GSF and TSF curves
change. Between 0 and this point, the TSF plots exhibit a sharp monotonic
increase, and then they reach a steady state very quickly. On the contrary,
the GSF curves increase/decrease steeply before reaching this time point,
and then are forced to one. According to the GSF theory, the approximate
interval [0, 30] is the region in which measurements are the most informative
for estimating the true parameters κ̄. This means that by sampling additional
data points here, we expect to obtain more information about κ̄, resulting in
more accurate estimates for these parameters.

By comparing the GSF plots, we also observe that strong correlations
exist between κ1, κ2, κ3 and κ4. The correlation coefficients between these
parameters, given in Table 7, reflect the dynamics of the curves shown in
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κ1 κ2 κ3 κ4

κ1 1.000 0.922 0.879 0.902
κ2 0.922 1.000 0.933 0.910
κ3 0.879 0.933 1.000 0.730
κ4 0.902 0.910 0.730 1.000

Table 7: Correlation coefficients for each parameter

Data points in Standard Errors for

Data Set [0,30] [40,210] Total κ1 κ2 κ3 κ4

KDS1 10 35 45 0.315 0.108 0.166 0.101

KDS2 30 35 65 0.205 0.067 0.114 0.062

KDS3 10 57 67 0.244 0.089 0.136 0.085

KDS4 10 43 53 0.296 0.094 0.140 0.094

KDS5 10 86 96 0.288 0.103 0.148 0.096

KDS6 10 172 182 0.254 0.093 0.131 0.087

KDS7 10 0 10 0.551 0.177 0.313 0.166

KDS8 30 0 30 0.240 0.075 0.140 0.066

KDS9 0 35 35 3659.1 1343.9 1860.3 1195.1

KDS10 0 86 86 2364.5 871.9 1189.3 800.47

True Value Parameters 2.88 1.09 1.51 1

Table 8: Typical standard errors for the transition rates κ1, κ2, κ3 and κ4

with a series of different types of data sets.

Figure 7, and also support our intuitive reasoning about flows in closed net-
works functioning at capacity. For such networks, the transition rates from
one state to the other are obviously highly correlated.

In order to illustrate the above theory, we again used ordinary least
squares inverse problems with numerous sets of data. We performed the
least square minimization for several data sets of type KDS1 with a total of
45 observations, where 10 are uniformly distributed within the interval [0, 30]
and 35 are uniformly distributed within the interval [40, 210] (for simplicity
we exclude the transition interval [30, 40] from our present analysis). Stan-
dard errors for the estimates of κ1, κ2, κ3 and κ4 in a typical optimization
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with one of the KDS1 data sets are shown in Table 8.
When increasing the number of points sampled in the interval [0, 30] to

30 and keeping the number of data points in [40, 210] the same (the KDS2

type data set, Table 8), the standard errors corresponding to each of the
parameters κ1, κ2, κ3 and κ4 decrease considerably. The new standard errors
range between 61% and 68% of the standard errors for the data set KDS1. A
decrease in the standard errors is also observed when we solve the least square
problem using data (sets of type KDS7, KDS8 of Table 8) only from the
interval [0, 30], where the standard errors obtained with data set KDS8 range
between 40% and 45% of the standard errors for KDS7. Thus, numerical
calculations fully support the GSF theory that increasing the number of
data points in the region [0, 30] results in more accurate estimates for the
parameter κ̄.

Next we increased the number of data points sampled from the interval
[40, 210], and obtained an entirely different outcome. By comparing the
entries for the data sets KDS4, KDS5 and KDS6 in Table 8, we see that
there is little improvement in the standard errors when we successively solve
the least square problem with a fixed number of 10 data points in the interval
[0, 30] and 43, 86 and respectively 172 data points in [40, 210]. Also, when
we attempt to estimate the parameters using only data (data sets KDS9 and
KDS10) sampled from the region [40, 210], the resulting standard errors are
large (the parameter estimates were also quite bad for all of the KDS9 and
KDS10 type data sets), increasing in magnitude as the number of sampled
points increases. As in the case of the logistic growth model above, this
is not surprising if one recalls the investigations in [9]. It is an expected
consequence of introducing redundancy in the sensitivity matrix, which in
turn makes the Fisher information matrix ill-posed, yielding huge standard
errors.

We also performed a similar analysis for the estimation of the nodal ca-
pacities li and of the initial conditions c0k from data with Gaussian noise
added as described above. In Figures 8 and 9 we depict the generalized and
traditional sensitivity functions with respect to l2, l3, l4 and c01, c02, c03 and
c04, respectively. In both cases, one can distinguish a small time interval,
at the beginning of the time axis, where the traditional sensitivity functions
exhibit sharp increases/decreases before reaching the steady state. The same
time interval also gives the region where the generalized sensitivity functions
with respect to c0k exhibit sharp increases/decreases before following the
“forced-to-one” artifact. Based on the theory, we can anticipate that for the
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Figure 8: Generalized and Traditional Sensitivity Functions for sm, l2, l3, l4.

0 50 100 150 200 250

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Generalized Sensitivity Functions with respect to c
01

, c
02

,c
03

,c
04

c
01

c
02

c
03

c
04

0 50 100 150 200 250
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Traditional Sensitivity Functions with respect to c
01

, c
02

,c
03

,c
04

c
01

c
02

c
03

c
04

Figure 9: Generalized and Traditional Sensitivity Functions for c01, c02, c03,
c04.

estimation of the initial conditions c0k, the data sampled from this initial time
interval is the most informative. Numerical calculations presented in Table 9
confirm this expectation. Indeed, increasing the number of data points in
the interval [0, 24] leads to smaller residual errors and better estimates (see
the standard errors corresponding to CDS2 and CDS8), whereas increasing
the number of data points in the interval [34, 210] does not provide much
improvement (see CDS4, CDS5 and CDS6). Similar to the findings when
we estimated the κ’s, when we use only data points from the interval [34, 210]
for the estimation of c0k (see CDS9 and CDS10), we obtain very large stan-
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Data points in Standard Errors for

Data Set [0,24] [34,210] Total c01 c02 c03 c04

CDS1 8 36 44 0.0075 0.0079 0.0077 0.0094

CDS2 24 36 60 0.0059 0.0064 0.0062 0.0088

CDS3 8 60 68 0.0083 0.0089 0.0079 0.0099

CDS4 8 45 53 0.0087 0.0084 0.0074 0.0097

CDS5 8 89 97 0.0089 0.0086 0.0077 0.0095

CDS6 8 178 186 0.0082 0.0088 0.0076 0.0092

CDS7 8 0 8 0.0110 0.0116 0.0062 0.0124

CDS8 24 0 24 0.0062 0.0071 0.0065 0.0090

CDS9 0 36 36 1596.50 1434.50 879.97 1544.90

CDS10 0 89 89 630.24 859.35 483.58 1095.80

True Values for c0k 0.0945 0.2221 0.6313 0.0519

Table 9: Typical standard errors for the initial conditions c0k with a series
of different types of data sets.

dard errors (as well as unacceptable parameter estimates) compared to the
previous ones.

As established in [2], sm is the parameter to which the system (20) is the
least sensitive overall. In fact for the particular values used for simulations
(sm = 0.1039, l2 = 0.2387, l3 = 0.6498, l4 = 0.0567) the output of the
system (20) does not depend on sm at all (see the traditional sensitivity
functions from Figure 8). From the particular form of our system and by
practical insight, this can be explained intuitively by the fact that when
the capacity sm of the first node is too high, the flow c4 (which replenishes
the network) will never reach it, making this capacity constraint inactive
for our dynamical system. The consequence is that for the given data, the
entries corresponding to sm in the sensitivity matrix are all zero, making the
Fisher information matrix singular. Intuitively, this simply says that it is
impossible to reconstruct a parameter from data where the solution values
do not depend at all on that parameter. This is the reason for which in
Figure 8 we present the generalized sensitivity functions only with respect to
l2, l3 and l4. Unlike the generalized sensitivity functions for κ and c0k which
present an initial region with sharp increases/decreases followed by a region
where they exhibit a “forced-to-one” artifact, the GSF for l2, l3 and l4 show a
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Data points in Standard Errors for

Data Set [0,24] [44,210] Total l2 l3 l4
LDS1 8 34 42 0.0023 0.0062 0.0031

LDS2 24 34 58 0.0019 0.0051 0.0026

LDS3 8 56 64 0.0018 0.0049 0.0025

LDS4 8 42 50 0.0020 0.0056 0.0028

LDS5 8 84 92 0.0014 0.0041 0.0020

LDS6 8 168 176 0.0011 0.0030 0.0015

LDS7 8 0 8 0.0071 0.0165 0.0086

LDS8 24 0 24 0.0032 0.0077 0.0039

LDS9 0 34 34 0.0026 0.0073 0.0037

LDS10 0 84 84 0.0015 0.0044 0.0021

True Values for l2, l3 and l4 0.2387 0.6498 0.0567

Table 10: Typical standard errors for the capacities l2, l3 and l4 with a series
of different types of data sets.

steady increase from zero to one throughout their time courses. We anticipate
therefore that for the estimation of the capacities l, the information is more
uniformly distributed in the interval [0, 210]. Numerical results presented in
Table 10, where higher number of data points result in lower standard errors,
confirm these expectations.

We conclude this section with the observation that the analysis and the
numerical simulations reported here illustrate the utility of the GSF in in-
vestigations of reasonably complex estimation problems. However, as in the
case of the logistic growth model, we emphasize that one should use care
when making inferences from the regions of monotonicity for these functions.
In addition to the regions of genuine information content, the GSF often
indicate regions of steep increase (the interval [40, 210] in Figure 7 and the
interval [34, 210] in Figure 9) which are due simply to the “forced-to-one”
artifact inherent in the GSF as defined in [26].

29



5 Conclusions

From the analysis presented in this paper and in [11, 26], it is clear that
generalized sensitivity functions are useful tools in inverse problem investi-
gations. The primary positive feature of generalized sensitivity functions is
their ability to suggest regions of high information content where, if addi-
tional observations are taken, one can generally expect to improve specific
parameter estimates. This is supported by our numerical findings for the
logistic growth model and a recently developed agricultural production net-
work model, and further supports the initial computational findings with
examples in [26]. Moreover, by visually investigating the dynamics of TSF
and GSF curves, we can potentially identify subsets of parameters which are
highly correlated. Although the GSF theory alone can be of use in formula-
tion of parameter estimation problems, the most insight can be gained when
the GSF are used in conjunction with traditional sensitivity functions. This
will ensure maximum understanding of parameter sensitivity and can be of
great value in improving data acquisition design.
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